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Abstract

Background.—Previous studies of endocrine-disrupting chemicals have examined one of these 

chemicals at a time in association with an outcome; studying mixtures better approximates human 

experience. We investigated the association of prenatal exposure to mixtures of persistent 

endocrine disruptors [per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls 

(PCBs), and organochlorine pesticides] with birth size among female offspring in the Avon 

Longitudinal Study of Parents and Children (ALSPAC), based in the United Kingdom in 1991–

1992.

Methods.—We quantified concentrations of 52 endocrine-disrupting chemicals in maternal 

serum collected during pregnancy at median 15 weeks’ gestation. Birth weight, crown-to-heel 

length, and head circumference were measured at birth; ponderal index and small for gestational 

age were calculated from these. We used repeated holdout weighted quantile sum regression and 

Bayesian kernel machine regression to examine mixtures in 313 mothers.
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Results.—Using weighted quantile sum regression, all mixtures (each chemical class separately 

and all three together) were inversely associated with birth weight. A one-unit increase in WQS 

index (a one-decile increase in chemical concentrations) for all three classes combined was 

associated with 55 g (β: −55 g, 95% CI: −89, −22 g) lower birth weight. Associations were weaker 

but still inverse using Bayesian kernel machine regression. Under both methods, PFAS were the 

most important contributors to the association with birth weight. We also observed inverse 

associations for crown-to-heel length.

Conclusions.—These results are consistent with the hypothesis that prenatal exposure to 

mixtures of persistent endocrine-disrupting chemicals affects birth size.
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Introduction

An endocrine-disrupting chemical is defined as a chemical that may interfere with the 

body’s endocrine system, potentially producing adverse developmental, reproductive, 

neurological, and immune effects.1 Environmentally persistent endocrine disruptors, such as 

organochlorine pesticides, polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl 

substances (PFAS), used throughout the 20th and 21st centuries for a variety of purposes, are 

typically highly resistant to degradation, and tend to bioaccumulate in humans and animals.
2–4 Exposures to PFAS, PCBs, and organochlorine pesticides have declined in the general 

population following numerous countries banning or severely restricting the production, 

handling, and disposal of several organochlorine pesticides and PCBs, as well as certain 

PFAS. Still, almost all humans have detectable concentrations of some of these persistent 

chemicals.5,6 Moreover, persistent endocrine-disrupting chemicals can cross the placental 

barrier, allowing for potential fetal exposure.7–10

Birth size is considered a relevant and sensitive marker of prenatal exposure to endocrine-

disrupting chemicals and is an important predictor of future health.11 Many previous studies 

(with select references cited here) of prenatal exposure to persistent endocrine disruptors and 

birth size suggest that they are associated with smaller birth size,12–15 though others have 

shown somewhat mixed results.16–19 A meta-analysis of maternal perfluorooctanoate 

(PFOA) exposure and infant birth weight estimated a 19 g reduction in birth weight for each 

1 ng/mL increase in maternal serum PFOA concentration.14 While these associations with 

birth size measures may not be considered large at the individual or clinical level, it is 

important to consider implications at the population level. A relatively modest and 

subclinical effect size may be associated with substantial population burden if the exposure 

is prevalent, like for PFAS.14 Additionally, PFOA is just one of the many environmental 

chemicals that could affect birth weight. Examining the cumulative effect of several 

endocrine-disrupting chemicals may show an even larger effect size than reported in the 

meta-analysis and other previous studies that examined chemicals individually.
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Historically, most studies have examined one endocrine-disrupting chemical at a time in 

relation to an outcome. Because humans are exposed to many chemicals, as opposed to one 

chemical in isolation, examining combined exposures or “mixtures” of chemicals would 

allow for a better approximation of the human experience.20 A mixture is a combination of 

three or more independent chemicals or chemical groups.21 Three previous studies have 

explored the use of mixture methods in relation to persistent endocrine-disruptors and birth 

size, though they used methods that accomplished different objectives. Generally speaking, 

these studies found that higher prenatal exposure to mixtures of PFAS22,23 and 

organochlorine pesticides23,24 was associated with smaller birth size measures (e.g., birth 

weight,22,23 head circumference24).

While several studies have examined prenatal exposure to persistent endocrine-disrupting 

chemicals and birth size, few to our knowledge have explored persistent exposure to these 

chemicals as a mixture. Our aim was to investigate the association of maternal gestational 

concentrations of mixtures of persistent endocrine disruptors (PFAS, PCBs, and 

organochlorine pesticides) and birth-size measures (weight, crown-to-heel length, head 

circumference, ponderal index, small for gestational age) in a sub-study of the Avon 

Longitudinal Study of Parents and Children (ALSPAC). Specifically, we aimed to estimate 

the overall effect of the mixture and identify the chemicals contributing the most to the 

overall effect within the mixture.

Methods

Study population

The Avon Longitudinal Study of Parents and Children (ALSPAC) is an ongoing prospective 

birth cohort of 14,541 pregnancies. ALSPAC enrolled pregnant women with an expected 

delivery date between 1 April 1991 and 31 December 1992 from three health districts in the 

former county of Avon, Great Britain. Information was collected on parents and children 

through clinic visits, interviews, and mailed questionnaires. Details on ALSPAC recruitment 

and study methods have been described elsewhere.25,26 A nested case–control study was 

conducted within the ALSPAC cohort to explore associations of prenatal maternal 

concentrations of various suspected endocrine disruptors and early menarche among the 

daughters. Details of the nested case–control study are described elsewhere.27 Cases were 

girls that obtained early menarche, defined as menarche prior to 11.5 years of age. Cases and 

controls were selected from singleton daughters who completed at least two (out of five) 

puberty staging questionnaires between 8 and 13 years old. To be eligible, cases needed to 

complete at least two staging questionnaires, with the second questionnaire returned after 

menarche had occurred. Controls had to complete the 13-year-old questionnaire to determine 

that menarche had not taken place before 11.5 years. The nested case–control study was 

reweighted to represent the full cohort. The weight for the cases (all girls who attained 

menarche before 11.5 years) was 1, and the weight for the controls (a random sample of 

girls who attained menarche at or after 11.5 years) was 15.1.

The study website contains details of all the data that are available through a fully searchable 

data dictionary and variable search tool (http://www.bris.ac.uk/alspac/researchers/our-data/). 

We obtained ethical approval for the study from the ALSPAC Ethics and Law Committee, 
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the Local Research Ethics Committees, and the Centers for Disease Control and Prevention 

(CDC) Institutional Review Board. Mothers provided written informed consent for 

participation in the study. Consent for biological samples has been collected in accordance 

with the Human Tissue Act (2004). Informed consent for the use of data collected via 

questionnaires and clinics was obtained from participants following the recommendations of 

the ALSPAC Ethics and Law Committee at the time.

Exposure assessment

At enrollment in 1991–1992, study staff collected fasting blood samples from mothers at 

median 15 (interquartile range (IQR): 10–28) weeks gestation. Samples were processed and 

frozen for future analysis. Maternal serum samples were held in storage at the University of 

Bristol until they were transferred under controlled conditions and analyzed at the National 

Center for Environmental Health of the CDC (Atlanta, GA). Laboratory analyses included 

low- and high-concentration pooled quality control materials, standards, reagent blanks, and 

study samples. Prior to statistical analysis, concentrations below the limit of detection 

(LOD) were imputed by dividing the LOD by the square root of 2.

Per- and polyfluoroalkyl substances—We quantified eight PFAS (Table 1) in serum 

via on-line solid-phase extraction coupled to isotope dilution high-performance liquid 

chromatography-tandem mass spectrometry.28 LODs were 0.20 ng/mL (EtFOSAA, PFDA, 

PFOS), 0.174 ng/mL (MeFOSAA), 0.10 ng/mL (FOSA, PFHxS, PFOA), and 0.082 ng/mL 

(PFNA). Coefficients of variation (CVs) for PFAS were largely below 10%. We included 

PFAS detected in greater than 75% of mothers in the main analyses.

Organochlorine pesticides and polychlorinated biphenyls—We measured nine 

organochlorine pesticides and 35 PCBs (Table 1) in serum using gas chromatography 

isotope dilution high resolution mass spectrometry.29 For PCBs and organochlorine 

pesticides, LODs are dependent on the size of the sample available, thus an individual LOD 

was reported for each individual result instead of an overall LOD. CVs were generally below 

10%. PCB and organochlorine pesticide concentrations were adjusted for lipids. As with 

PFAS, PCBs and organochlorine pesticides detected in greater than 75% of mothers were 

included in the main analyses.

Outcome assessment

Birth weight (g) was abstracted from infant medical records. Trained ALSPAC staff 

measured crown-to-heel length (cm) using a Harpenden neonatometer (Holtain Ltd., 

Crymych, United Kingdom) and head circumference (cm) using a lasso tape measure 

(median 1 day, IQR: 1–3 days).30,31 Ponderal index was calculated using the following 

formula: (weight in g/height in cm3) × 100. A ponderal index of <2.4 was considered low.32 

We defined small for gestational age (SGA) as below the 10th percentile of the distribution 

for birth weight among female infants in the United Kingdom, adjusted for gestational age at 

birth. We calculated standard deviation scores of weight on the basis of the British growth 

reference centiles from 199033 with Excel macros provided on the internet 

(www.healthforallchildren.co.uk). In ALSPAC, the final clinical estimate of the expected 
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date of delivery was abstracted from the obstetric records and used to calculate gestational 

age at delivery.

Covariates

Covariate information was collected by clinical staff or through self-report on questionnaires 

completed by the mother during or immediately after pregnancy. Covariates under 

consideration included: gestational age at biological sample collection (weeks), maternal age 

(years), maternal pre-pregnancy body mass index (BMI) (kg/m2), maternal race (white/

nonwhite), maternal education (classified as <O-level (ordinary level: required, completed at 

age 16), O-level, or > O-level), parity (nulliparous/multiparous), smoking during pregnancy 

(any/none), and hours of physical activity (enough to work up a sweat) per week during 

pregnancy (>0 hours/0 hours).

Statistical analyses

We conducted descriptive analyses to compare mother–daughter dyad characteristics by 

median birth weight and select endocrine-disrupting chemicals. We reported the median and 

interquartile range, as well as percent below the LOD, for all measured endocrine-disrupting 

chemicals. We described correlations among endocrine-disrupting chemicals using 

Spearman correlation coefficients.

We modeled the chemical exposures under study as natural log-transformed continuous 

variables. We evaluated confounding using previous knowledge, which we assessed using a 

directed acyclic graph, and by taking into consideration the associations between persistent 

endocrine-disrupting chemicals and maternal characteristics. We ran single-chemical linear 

regression models to examine independent associations between each chemical and birth 

weight.

We used Bayesian kernel machine regression to visualize the exposure–response function 

and verify assumptions (linearity, no interaction) using the R package bkmr.34–36 Assuming 

no identification of non-linearity and/or interaction within the mixture through Bayesian 

kernel machine regression, weighted quantile sum regression was used to estimate 

associations of maternal endocrine-disrupting mixtures with birth size using the R package 

gWQS.37 Mixtures under study were each chemical class separately (PFAS, PCBs, and 

organochlorine pesticides) and all three chemicals classes combined.

Weighted quantile sum regression creates a weighted linear index of correlated predictors 

that are weighted according to their strength of association with the outcome of interest.38 

Specifically, we used the following equation to calculate the weights of c set of correlated 

variables:

g(μ) = β0 + β1 ∑
i = 1

c
wiqi + z′φ

The sum term was the index for the c items, scored into quantiles (denoted qi), and weights 

were represented by the sum of wi. Each wi was constrained between 0 and 1. Within each 
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bootstrap sample, we estimated the wi by maximum likelihood and constrained them to sum 

to 1. All covariates were represented by z′φ. Prior to analysis, we split the data into two 

datasets at random: a training dataset (40%) and validation dataset (60%). Using the training 

dataset, we selected 100 bootstrap samples and determined the strength of the associations 

for each c item by the beta coefficient. The index was calculated based on the mean wis 

across all bootstrap samples and was interpreted as an estimation of the overall mixture 

effect.38–42 To improve stability of the estimates of weights across training and test data 

partitions, we applied repeated holdout validation; this approach combines cross-validation 

and bootstrap resampling.43 We generated a distribution of results by repeating weighted 

quantile sum regression 100 times on data split randomly into training (40%) and validation 

(60%) sets and the mean was taken as the final estimate.

We employed Bayesian kernel machine regression as a complementary mixture method to 

weighted quantile sum regression. Bayesian kernel machine regression is a flexible semi-

parametric technique that models the combined effects of different chemicals, while 

allowing for nonlinearity and interactions among chemicals.44 This approach enables the 

examination of independent effects of mixture members, interactions among them, and the 

overall mixture effect. Within Bayesian kernel machine regression, we used hierarchical 

variable selection, which provided group importance scores [posterior inclusion probabilities 

(PIPs)] for pre-defined mutually exclusive groups of variables. Further, we estimated the 

importance of a chemical given that the group containing the chemical was important 

(conditional PIPs).34–36 Within Bayesian kernel machine regression, we standardized all 

continuous variables to improve computational efficiency. Currently, the bkmr package does 

not allow for weighting, so we were unable to weight our nested case–control data back to 

the full cohort. SAS software 9.4 (Cary, NC) was used for descriptive analyses. We used R 

software 3.5.0 (Vienna, Austria) for weighted quantile sum and Bayesian kernel machine 

regression analyses.

Results

Descriptive statistics

Most mothers in this subsample of ALSPAC were white (98%), well-educated (82% 

completed secondary education or higher), and above the age of 25 (79%). PCB153 and 

p,p’-DDE were highest among women with greater than a secondary education and higher 

among women who drank alcohol during pregnancy (Table 2). PCB153 and p,p’-DDE were 

higher among older women and PFOA was higher among nulliparous women. Very few 

infants were born with low birth weight (4%) and 13% of infants had a low ponderal index 

(Table 2).

Of the 52 chemicals measured, 31 were detected in more than 75% of mothers (Table 3). 

Correlation was high among the subset of chemicals detected in most mothers (eFigure 1). 

Among the 31 chemicals, PCBs and organochlorine pesticides showed high correlation 

within and between classes. PFAS chemicals exhibited lower correlation within the class, but 

were still positively correlated with some strong correlations.
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Single-chemical models

In adjusted single-chemical models of maternal serum concentrations of endocrine-

disrupting chemicals with birth weight, almost all chemicals were inversely associated with 

birth weight (eTable 1). Among PFAS, a 10% higher PFOA concentration was associated 

with 25 g lower birth weight (β: −25 g, 95% CI: −36, −14 g); PFOS and EtFOSAA were 

also strongly inversely associated with birth weight. PCB105, PCB138, PCB153, PCB170, 

PCB180, PCB196, and PCB206 were strongly inversely associated with birth weight, while 

no organochlorine pesticides were strongly associated with birth weight.

Weighted Quantile Sum Regression

In repeated holdout weighted quantile sum regression models, the weighted quantile sum 

indices for mixtures (PFAS, PCBs, organochlorine pesticides, and all three classes 

combined) were inversely associated with birth weight, head circumference, and crown-to-

heel length (Table 4 and eTable 2). For example, one-unit higher of the weighted quantile 

sum index (representing a one-decile increase in chemical concentrations) for all three 

classes combined was associated with 55 g (β: −55 g, 95% CI: −89, −22 g) lower birth 

weight (Table 4). We identified EtFOSAA, PFOA, and MeFOSAA as contributing the most 

to the weighted quantile sum index (weights: 0.16, 0.11, and 0.10, respectively). Inverse 

associations were also seen for head circumference and crown-to-heel length: one-unit 

higher of the weighted quantile sum index for all three classes combined was associated with 

0.11 cm (β: −0.11 cm, 95% CI: −0.21, −0.01 cm) smaller head circumference and 0.29 cm 

(β: −0.29 cm, 95% CI: −0.44, −0.13 cm) shorter crown-to-heel length. Associations with 

ponderal index were null for all mixtures under consideration. All mixtures showed weak 

associations with SGA using weighted quantile sum regression. For the mixture of all three 

classes combined, one-unit higher of the weighted quantile sum index (representing a one-

decile increase in chemical concentrations) was associated with 21% higher odds of SGA 

(odds ratio: 1.21; 95% CI: 0.88, 1.66) (eTable 3).

Bayesian Kernel Machine Regression

Bayesian kernel machine regression results for the overall effect of the mixtures on birth size 

outcomes are presented in eFigure 2. Associations were strongest and in the inverse 

direction for the overall effect of the PFAS mixture and the mixture of all three classes 

combined on birth weight and crown-to-heel length. We observed some weak inverse 

associations for the PCB mixture on birth weight and crown-to-heel length. Associations of 

all mixtures with head circumference and SGA were weak, while associations with ponderal 

index were null.

For the 31-chemical mixture of all three classes combined, we estimated a weak overall 

mixture effect using Bayesian kernel machine regression, with higher exposure to the 

mixture associated with lower birth weight (eFigure 2). Holding all 31 endocrine-disrupting 

chemicals in the mixture at the 75th percentile compared to the 50th percentile was 

associated with 0.13 lower birth weight z-score (estimate: −0.13, 95% credible interval: 

−0.34, 0.07), which translates to 61 g lower birth weight (estimate: −61, 95% credible 

interval: −156, 33). PFAS had the highest PIP (0.76), making it the most important group in 
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the mixture (eTable 4). The independent chemical associations all appear relatively linear 

(eFigure 3A) and we observed no interaction among mixture members (eFigure 3B).

Sensitivity analyses

We conducted a sensitivity analysis to explore differences in birth weight among those with 

detectable versus those with non-detectable concentrations (coded as a dichotomous 

variable) (eTable 5). We found that for FOSA, infants born to mothers with detectable 

concentrations were 120 g smaller (β: −120 g, 95% CI: −218, −23 g) than those with non-

detectable concentrations. We conducted another sensitivity analysis to examine the effect of 

the timing biological sample collection during pregnancy on the association of persistent 

endocrine-disrupting chemicals with birth size. We observed no differences when restricting 

our analyses to samples collected during the first half of pregnancy (≤20 weeks gestation) 

(eTable 6 and eFigure 4).

Discussion

In this study, we observed an inverse association of prenatal exposure to mixtures of PFAS, 

PCBs, and organochlorine pesticides with birth size among British girls using weighted 

quantile sum regression. We observed suggestions of an inverse association of prenatal 

exposure to mixtures of persistent endocrine-disrupting chemicals with birth weight and 

crown-to-heel length using Bayesian kernel machine regression; associations were strongest 

for the PFAS mixture. Taken together, these results support previous findings under the 

single-chemical paradigm: higher prenatal concentrations of persistent endocrine-disrupting 

chemicals are associated with small decreases in birth weight and crown-to-heel length.

Comparing our results across single-chemical linear, weighted quantile sum, and Bayesian 

kernel machine regression models, there are similarities and differences. First, all models 

suggested that higher prenatal exposure to persistent endocrine-disrupting chemicals was 

associated with lower birth size measures, though the strength of the association varied by 

model. Generally speaking, associations were stronger in weighted quantile sum regression 

than in Bayesian kernel machine regression. Weighted quantile sum regression assumes that 

all associations are in the same direction (in this case, negative); if this assumption is not 

met, results can be biased away from the null.45 While we saw inverse associations in all but 

one single-chemical model (PCB172), the potential for bias could explain the differences in 

magnitude between weighted quantile sum regression and Bayesian kernel machine 

regression. Second, we frequently identified PFAS chemicals as the most important class of 

chemicals. Across models, PFOA, PFHxS, MeFOSAA, and EtFOSAA were often the top 

contributors to the outcome. Third, across mixture methods, we saw that birth weight and 

crown-to-heel length were more strongly inversely associated with prenatal exposure to 

mixtures of endocrine-disrupting chemicals than other outcomes.

Previous studies of prenatal exposure to mixtures of persistent endocrine disruptors have 

used different methods with differing goals. One study used elastic net regression to identify 

the chemicals that contribute the most to the outcome from a correlated mixture of 

chemicals, and identified PFOA and p,p’-DDE as being inversely associated with birth 

weight.23 While not the primary goal, weighted quantile sum and Bayesian kernel machine 
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regression can also identify important chemical contributors within a mixture. In our birth 

weight analyses using these regression models (our study examined a different mixture of 

chemicals than Lenters et al., 2016),23 PFOA was one of the most important contributors to 

the overall mixture effect using both methods, but p,p’-DDE was not identified as an 

important contributor. Another previously published study of prenatal concentrations of 

endocrine-disrupting mixtures and birth weight used Bayesian hierarchical linear models, 

which takes a priori defined groups and estimates their overall effect on the outcome. Woods 

et al. reported PFAS, PCBs, and organochlorine pesticides had null or small associations 

with birth weight; PFAS were most strongly associated with lower birth weight.22 While our 

study found differences of a larger effect size, the findings of Woods et al. are in line with 

what we found in this study in terms of the most important class, PFAS. Last, a study 

employing Bayesian kernel machine regression found that prenatal exposure to a mixture of 

organochlorine pesticides was inversely associated with most fetal growth measures, 

including head circumference.24 In our analyses, birth weight, head circumference, and 

crown-to-heel length associations were in the inverse direction, though associations were 

comparatively the weakest for the mixture of four organochlorine pesticides in both 

weighted quantile sum and Bayesian kernel machine regression (compared to PFAS and 

PCB mixtures). Overall, the maternal serum concentrations seen in our study of British 

mothers from 1991–1992 tended to be higher than the concentrations seen in Ohio mothers 

from 2003–200622 and American mothers from 2009–2013,24 and similar to concentrations 

among mothers from Greenland, Poland, and Ukraine in 2002–2004.23 These varied 

concentrations, alongside the use of different mixture methods with differing goals, could 

explain some differences observed in these studies of prenatal exposure to mixtures of 

endocrine-disrupting chemicals with birth size.

Birth size is an important predictor of future health. Low birth weight infants face more 

immediate health problems than their normal weight counterparts and may be more likely to 

develop certain health conditions later in life such as intellectual and developmental delays, 

obesity, diabetes, and heart disease.46 Any progress that could be made in reducing the 

incidence of low birth weight, such as through the reduction of exposure to endocrine 

disruptors, would have a profound public health impact. Analyzing endocrine-disrupting 

chemicals as mixtures will aid in meeting this goal: here, we gain a clearer picture of the 

cumulative estimated effect of prenatal exposure to persistent endocrine disruptors on birth 

size and we identify the PFAS class as the most important contributor to the association. 

Such results could help guide public health efforts by quantifying the risk of disease from 

cumulative chemical exposure to identify exposures that may be amenable to public health 

interventions.47 Further, analyzing chemicals as mixtures instead of as single chemicals 

allows us to determine whether public health strategies to reduce chemical exposures should 

target the entire mixture or simply components of it.48

This study has several strengths, including its prospective study design within a population-

based birth cohort with frequent and thorough longitudinal data collection. Additionally, we 

have reliable biomonitoring measurements of more than 50 persistent endocrine disruptors, a 

number of outcomes measured by health professionals at birth, and extensive covariate data 

available for mothers and daughters. Lastly, we were able to compare results across two 

complementary mixture methods.
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This study also has limitations. We only examined mother–daughter dyads in this sub-study 

that was originally intended to investigate early menarche. There is some evidence to 

suggest that associations of endocrine-disrupting chemicals and birth size are modified by 

infant sex,49,50 so restricting to daughters may be a prudent choice. Additionally, we were 

unable to weight Bayesian kernel machine regression analyses of this nested case–control 

study back to the full cohort, which limits generalizability. Nevertheless, results of the 

unweighted analyses were similar to single-chemical and weighted quantile sum regression 

results. Further, while we have detailed covariate data, there is always the possibility that we 

were not able to completely control for confounding by certain sensitive or self-reported 

variables, such as smoking, alcohol use, and socioeconomic status. Approaches to mixture 

analyses that involve regressing the outcome on several correlated exposures simultaneously 

can in some cases amplify rather than reduce confounding bias (“coexposure amplification 

bias”), particularly in cases of residual confounding.51 As discussed previously, there is the 

potential for bias away from the null in weighted quantile sum regression models due to the 

assumption that associations of all mixture components are in the same direction45 (here, 

negative), which is why we also used Bayesian kernel machine regression for all mixture 

analyses. Further, due to the large number of variables used in mixture analyses, we were 

missing data on roughly 30% of the subsample (eFigure 5). We compared mother–daughter 

characteristics for those with complete data included in mixture analyses (n=313) to those in 

the nested case–control study (n=448) and to the population from which the case–control 

study was drawn (n=3338) (eTable 7). Characteristics were similar across subsets, though 

low birth weight infants were slightly underrepresented in the subset with complete data. 

Finally, there is the possibility of reverse causality and confounding because the outcome of 

interest, birth size, may affect the measured biomarker concentrations and there may be 

shared determinants, such as hemodynamics, of the biomarker and pregnancy outcome.52 

Studies have demonstrated that reverse causality and confounding are less of a concern when 

the range of concentrations is wide and when blood samples are collected early in 

pregnancy.12,53 In our study, 66% of samples were collected in the first half of pregnancy 

(≤20 weeks gestation) and we adjusted for gestational age (in weeks) of biological sample 

collection. Sensitivity analyses showed little to no difference when restricting to mother–

daughter dyads with biological samples collected in the first half of pregnancy (eTable 6 and 

eFigure 4).

In conclusion, we found inverse associations between prenatal concentrations of mixtures of 

persistent endocrine-disrupting chemicals and birth size, namely birth weight and crown-to-

heel length. While this study reaches a similar conclusion as previous studies published on 

this topic under the single-chemical paradigm, it fills a gap relating to mixtures of 

endocrine-disrupting chemicals and birth size and comes closer to replicating the human 

experience.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Persistent endocrine-disrupting chemicals quantified in maternal serum in the ALSPAC nested case–control 

study.

Chemical Name Abbreviated Name

Per- and polyfluoroalkyl substances

Perfluorooctane sulfonamide FOSA

2-(N-ethylperfluorooctanesulfonamido) acetate EtFOSAA

2-(N-methyl-perfluorooctanesulfonamido) acetate MeFOSAA

Perfluorohexane sulfonate PFHxS

Perfluorooctane sulfonate PFOS

Perfluorooctanoate PFOA

Perfluorononanoate PFNA

Perfluorodecanoate PFDA

Polychlorinated Biphenyls

2,4,4′-trichlorobiphenyl PCB28

2,2′,3,5′-tetrachlorobiphenyl PCB44

2,2′,4,5′-tetrachlorobiphenyl PCB49

2,2′,5,5′-tetrachlorobiphenyl PCB52

2,3′,4,4′-tetrachlorobiphenyl PCB66

2,4,4′,5-tetrachlorobiphenyl PCB74

2,2′,3,4,5′-pentachlorobiphenyl PCB87

2,2′,4,4′,5-pentachlorobiphenyl PCB99

2,2′,4,5,5′-pentachlorobiphenyl PCB101

2,3,3′,4,4′-pentachlorobiphenyl PCB105

2,3,3′,4′,6-pentachlorobiphenyl PCB110

2,3′,4,4′,5-pentachlorobiphenyl PCB118

2,2′,3,3′,4,4′-hexachlorobiphenyl PCB128

2,2′,3,4,4′,5′-hexachlorobiphenyl and 2,3,3′,4,4′,6-hexachlorobiphenyl PCB138-158

2,2′,3,4′,5,5′-hexachlorobiphenyl PCB146

2,2′,3,4′,5′,6-hexachlorobiphenyl PCB149

2,2′,3,5,5′,6-hexachlorobiphenyl PCB151

2,2′,4,4′,5,5′-hexachlorobiphenyl PCB153

2,3,3′,4,4′,5-hexachlorobiphenyl PCB156

2,3,3′,4,4′,5′-hexachlorobiphenyl PCB157

2,3′,4,4′,5,5′-hexachlorobiphenyl PCB167

2,2′,3,3′,4,4′,5-heptachlorobiphenyl PCB170

2,2′,3,3′,4,5,5′-heptachlorobiphenyl PCB172

2,2′,3,3′,4′,5,6-heptachlorobiphenyl PCB177

2,2′,3,3′,5,5′,6-heptachlorobiphenyl PCB178

2,2′,3,4,4′,5,5′-heptachlorobiphenyl PCB180

2,2′,3,4,4′,5′,6-heptachlorobiphenyl PCB183
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Chemical Name Abbreviated Name

2,2′,3,4′,5,5′,6-heptachlorobiphenyl PCB187

2,3,3′,4,4′,5,5′-heptachlorobiphenyl PCB189

2,2′,3,3′,4,4′,5,5′-octachlorobiphenyl PCB194

2,2′,3,3′,4,4′,5,6-octachlorobiphenyl PCB195

2,2′,3,3′,4,4′,5′,6-octachlorobiphenyl and 2,2′,3,4,4′,5,5′,6-octachlorobiphenyl PCB196-203

2,2′,3,3′,4,5,6,6′-octachlorobiphenyl PCB199

2,2′,3,3′,4,4′,5,5′,6-nonachlorobiphenyl PCB206

Decachlorobiphenyl PCB209

Organochlorine Pesticides

Hexachlorobenzene HCB

β-Hexachlorocyclohexane β-HCH

ϒ-Hexachlorocyclohexane (Lindane) γ-HCH

Oxychlordane Oxychlordane

Trans-Nonachlor Trans-nonachlor

2,2-Bis(4-chlorophenyl)-1,1-dichloroethene p,p’-DDE

2-(4-chlorophenyl)-2-(2-chlorophenyl)-1,1,1-trichloroethan o,p’-DDT

2,2-Bis(4-chlorophenyl)-1,1,1-trichloroethan p,p’-DDT

Mirex Mirex
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Table 3.

Serum concentrations of persistent endocrine-disrupting chemical exposure among mothers of the Avon 

Longitudinal Study of Parents and Children (ALSPAC) during pregnancy (median gestational age at sample 

collection: 15 weeks) (N=448 mother-daughter dyads).

Serum concentrations

Q1 Median Q3 % <LOD

Per- and polyfluoroalkyl substances (PFAS) (ng/mL)

PFOA 2.8 3.7 4.8 0.0

PFOS 15.1 19.8 24.9 0.0

PFHxS 1.2 1.6 2.2 0.2

PFNA 0.41 0.49 0.66 0.2

FOSA <LOD 0.20 0.30 30.6

MeFOSAA 0.26 0.35 0.65 14.5

EtFOSAA 0.40 0.60 0.90 2.5

PFDA <LOD <LOD <LOD 97.3

Polychlorinated biphenyls (PCBs) (ng/g lipid)

PCB28 3.5 5.3 8.3 8.7

PCB44 <LOD 1.9 4.0 30.4

PCB49 <LOD <LOD 1.9 58.3

PCB52 <LOD 3.3 7.6 30.1

PCB66 <LOD 1.6 2.5 30.4

PCB74 8.6 11.1 15.1 0.22

PCB87 <LOD <LOD 1.7 59.6

PCB99 7.0 9.4 12.1 0.9

PCB101 <LOD 2.2 5.4 30.4

PCB105 2.0 2.9 4.0 7.4

PCB110 <LOD <LOD 2.8 53.6

PCB118 10.9 14.9 20.6 0.22

PCB128 <LOD <LOD <LOD 89.5

PCB138
a 30.4 41.5 54.0 0.2

PCB146 4.6 6.0 8.1 2.5

PCB149 <LOD <LOD 1.8 60.9

PCB151 <LOD <LOD <LOD 79.5

PCB153 48.3 64.5 85.8 0.0

PCB156 4.8 6.3 8.4 1.8

PCB157 <LOD 1.3 1.9 33.9

PCB167 <LOD 2.0 2.8 26.1

PCB170 14.5 18.9 24.9 0.0

PCB172 1.1 1.9 2.7 23.0

PCB177 2.3 3.1 4.1 8.9

PCB178 1.8 2.7 3.7 14.3

PCB180 33.5 45.2 60.1 0.0
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Serum concentrations

Q1 Median Q3 % <LOD

PCB183 4.6 6.2 8.2 3.4

PCB187 8.6 11.3 15.2 1.1

PCB189 <LOD <LOD 0.7 74.3

PCB194 5.5 7.5 10.4 3.4

PCB195 1.5 2.2 3.0 19.0

PCB196
a 5.7 7.7 10.5 2.0

PCB199 3.9 5.5 7.8 2.7

PCB206 1.7 2.3 3.2 10.3

PCB209 <LOD 1.5 2.0 27.7

Organochlorine pesticides (ng/g lipid)

HCB 37.9 50.2 63.4 0.0

β-HCH 34.6 47.1 62.4 1.8

γ-HCH <LOD <LOD <LOD 79.0

Oxychlordane <LOD <LOD 4.2 71.9

Trans-nonachlor <LOD <LOD 4.6 67.0

p,p’-DDE 193 311 499 0.2

o,p’-DDT <LOD <LOD <LOD 98.4

p,p’-DDT 7.7 11.0 16.2 11.4

Mirex <LOD <LOD <LOD 99.3

Abbreviations: Q1, quartile 1; Q3, quartile 3; LOD, limit of detection; ng/mL, nanogram per milliliter; ng/g lipid, nanogram per gram lipid

a
PCB congeners 138 and 158 could not be separated and were quantified as a summed concentration, referred to as PCB138. Similarly, PCB 

congeners 196 and 203 could not be separated and were quantified as a summed concentration, referred to as PCB196

Epidemiology. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marks et al. Page 21

Ta
b

le
 4

.

A
dj

us
te

da  a
ss

oc
ia

tio
ns

 f
or

 th
e 

31
-c

he
m

ic
al

 m
ix

tu
re

b  w
ith

 a
cc

om
pa

ny
in

g 
w

ei
gh

ts
 o

f 
m

at
er

na
l s

er
um

 c
on

ce
nt

ra
tio

ns
 o

f 
pe

rs
is

te
nt

 e
nd

oc
ri

ne
-d

is
ru

pt
in

g 

ch
em

ic
al

 (
E

D
C

) 
ex

po
su

re
 w

ith
 b

ir
th

 s
iz

e 
m

ea
su

re
s 

in
 th

e 
A

vo
n 

L
on

gi
tu

di
na

l S
tu

dy
 o

f 
Pa

re
nt

s 
an

d 
C

hi
ld

re
n 

(A
L

SP
A

C
) 

su
b-

st
ud

y 
us

in
g 

re
pe

at
ed

 h
ol

do
ut

 

w
ei

gh
te

d 
qu

an
til

e 
su

m
 r

eg
re

ss
io

n 
(N

=
31

3)
.

B
ir

th
 w

ei
gh

t 
(g

)
H

ea
d 

ci
rc

um
fe

re
nc

e 
(c

m
)

C
ro

w
n-

to
-h

ee
l l

en
gt

h 
(c

m
)

βc
95

%
 C

I
W

ei
gh

t
βc

95
%

 C
I

W
ei

gh
t

βc
95

%
 C

I
W

ei
gh

t

O
ve

ra
llb

−
55

−
89

, −
22

−
0.

11
−

0.
21

, −
0.

01
−

0.
29

−
0.

44
, −

0.
13

PF
O

A
0.

11
e

0.
01

0.
11

e

PF
O

S
0.

04
e

0.
01

0.
06

e

PF
H

xS
0.

04
e

0.
08

e
0.

07
e

PF
N

A
0.

04
e

0.
03

0.
03

M
eF

O
SA

A
0.

10
e

0.
14

e
0.

13
e

E
tF

O
SA

A
0.

16
e

0.
13

e
0.

17
e

PC
B

28
0.

02
0.

08
e

0.
02

PC
B

74
0.

01
0.

03
0.

01

PC
B

99
0.

01
0.

02
0.

01

PC
B

10
5

0.
01

0.
01

0.
00

PC
B

11
8

0.
01

0.
01

0.
00

PC
B

13
8d

0.
01

0.
01

0.
00

PC
B

14
6

0.
04

e
0.

02
0.

05
e

PC
B

15
3

0.
03

0.
03

0.
01

PC
B

15
6

0.
03

e
0.

01
0.

01

PC
B

17
0

0.
02

0.
02

0.
01

PC
B

17
2

0.
04

e
0.

05
e

0.
04

e

PC
B

17
7

0.
03

0.
02

0.
02

PC
B

17
8

0.
02

0.
05

e
0.

01

Epidemiology. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marks et al. Page 22

B
ir

th
 w

ei
gh

t 
(g

)
H

ea
d 

ci
rc

um
fe

re
nc

e 
(c

m
)

C
ro

w
n-

to
-h

ee
l l

en
gt

h 
(c

m
)

βc
95

%
 C

I
W

ei
gh

t
βc

95
%

 C
I

W
ei

gh
t

βc
95

%
 C

I
W

ei
gh

t

PC
B

18
0

0.
04

e
0.

03
0.

02

PC
B

18
3

0.
01

0.
01

0.
01

PC
B

18
7

0.
01

0.
01

0.
01

PC
B

19
4

0.
02

0.
02

0.
04

e

PC
B

19
5

0.
03

0.
02

0.
04

e

PC
B

19
6d

0.
01

0.
01

0.
01

PC
B

19
9

0.
04

e
0.

04
e

0.
03

PC
B

20
6

0.
02

0.
02

0.
01

H
C

B
0.

01
0.

01
0.

03

β-
H

C
H

0.
02

0.
05

e
0.

02

p,
p’

-D
D

E
0.

01
0.

02
0.

01

p,
p’

-D
D

T
0.

02
0.

02
0.

01

A
bb

re
vi

at
io

ns
: C

I,
 c

on
fi

de
nc

e 
in

te
rv

al
; P

FA
S,

 p
er

- 
an

d 
po

ly
fl

uo
ro

al
ky

l s
ub

st
an

ce
s;

 P
C

B
s,

 p
ol

yc
hl

or
in

at
ed

 b
ip

he
ny

ls

a A
dj

us
te

d 
fo

r 
m

at
er

na
l e

du
ca

tio
n,

 p
ar

ity
, p

re
-p

re
gn

an
cy

 b
od

y 
m

as
s 

in
de

x,
 m

at
er

na
l a

ge
, p

re
na

ta
l s

m
ok

in
g,

 a
nd

 g
es

ta
tio

na
l w

ee
k 

at
 s

am
pl

e 
co

lle
ct

io
n

b O
ve

ra
ll 

m
ix

tu
re

 in
cl

ud
es

 P
FA

S,
 P

C
B

, a
nd

 o
rg

an
oc

hl
or

in
e 

pe
st

ic
id

e 
cl

as
se

s

c β
 f

or
 o

ne
-u

ni
t h

ig
he

r 
of

 th
e 

W
Q

S 
in

de
x 

(r
ep

re
se

nt
in

g 
a 

on
e-

de
ci

le
 in

cr
ea

se
 in

 c
he

m
ic

al
 c

on
ce

nt
ra

tio
ns

)

d PC
B

 c
on

ge
ne

rs
 1

38
 a

nd
 1

58
 c

ou
ld

 n
ot

 b
e 

se
pa

ra
te

d 
an

d 
w

er
e 

qu
an

tif
ie

d 
as

 a
 s

um
m

ed
 c

on
ce

nt
ra

tio
n,

 r
ef

er
re

d 
to

 a
s 

PC
B

13
8.

 S
im

ila
rl

y,
 P

C
B

 c
on

ge
ne

rs
 1

96
 a

nd
 2

03
 c

ou
ld

 n
ot

 b
e 

se
pa

ra
te

d 
an

d 
w

er
e 

qu
an

tif
ie

d 
as

 a
 s

um
m

ed
 c

on
ce

nt
ra

tio
n,

 r
ef

er
re

d 
to

 a
s 

PC
B

19
6

e Si
gn

if
ic

an
t c

on
tr

ib
ut

or
 to

 th
e 

ov
er

al
l m

ix
tu

re
 e

ff
ec

t (
>

1/
nu

m
be

r 
of

 c
he

m
ic

al
s 

in
 m

ix
tu

re
, o

r 
0.

03
2 

in
 th

is
 a

na
ly

si
s)

Epidemiology. Author manuscript; available in PMC 2022 July 01.


	Abstract
	Introduction
	Methods
	Study population
	Exposure assessment
	Per- and polyfluoroalkyl substances
	Organochlorine pesticides and polychlorinated biphenyls

	Outcome assessment
	Covariates
	Statistical analyses

	Results
	Descriptive statistics
	Single-chemical models
	Weighted Quantile Sum Regression
	Bayesian Kernel Machine Regression
	Sensitivity analyses

	Discussion
	References
	Table 1.
	Table 2.
	Table 3.
	Table 4.

